Alternate Operating Scenarios for NDCX-II*

W M Sharp, A Friedman, D P Grote, R H Cohen, S M Lund, *LLNL*J-L Vay, W L Waldron, *LBNL*

16 August 2012

Heavy Ion Fusion Science Virtual National Laboratory

The NDCX-II project is complete

Livermore donated 50 induction cells from the ATA electron accelerator

- ferrite cores each provide 1.4 x 10-2 Volt-seconds
- Blumlein voltage sources offer 200-250 kV with FWHM duration of 70 ns

project was completed in March 2012

- commissioning is underway
- HEDP target experiments will follow

12-cell NDCX-II baseline layout

What does NDCX-II look like?

Drift-compression is used twice in NDCX-II

initial non-neutral drift-compression for

- optimum use of induction-core Volt-seconds
- early use of 70-ns 250-kV Blumlein power supplies from ATA

final neutralized drift-compression to the target

- plasma electrons move to cancel the beam electric field
- requires $n_{\rm plasma} > n_{\rm beam}$ for this to work well

What does the baseline acceleration schedule look like?

NDCX-II uses a novel acceleration strategy to make best use of 70-ns ATA cells

- upstream cells compress the beam
- the beam is allowed to "bounce" as remaining cells add energy and final velocity "tilt"

Beam snapshots illustrate acceleration schedule

What do the baseline fields look like?

strategy is to first compress the beam then accelerate it

makes optimal use of ATA cores and Blumleins

250 kV "flat-top" measured waveform from test stand

200 kV "ramp" measured waveform from test stand

"shaped" for initial bunch compression (scaled from measured waveforms)

"shaped" to equalize beam energy after injection

Scenario 1: reduce NDCX-II injection current to extend source lifetime

main complication is reduced space charge

- emitter / extractor voltage ratio is held at 1.11
- waveforms in front end are only rescaled and retimed
- final currents scale roughly with source current

What do the acceleration schedules look like?

schedules remain similar after re-optimization

- cases here all use emitter/extractor voltage ratio of 1.11
- front-end voltages must be reduced to preserve fractional tilt

Scenario 2: add cells to reach higher energy

adding cells to NDCX-II will enable investigation of short ion pulses

- 50 ATA cells are available
- short pulses are needed to study direct-drive shock physics

How well does lengthening NDCX-II work?

each case needs to be re-optimized

- front-end waveforms is unaltered from the baseline
- number of tilt cells is increased to give about 10% final tilt at the higher energy

What do the acceleration schedules look like?

beam all maintain nearly constant duration after initial compression

- corresponding length plots show increasing "bounce" after first minimum
- this lengthening smooths phase-space ripples

Scenario 3: use alternate ion species

other species may become attractive as NDCX-II matures

- a helium plasma source could replace lithium for higher current and longer life
- heavier species would allow Bragg-peak deposition at higher energies
- but most heavier species require a higher-voltage injector

Helium can use unmodified NDCX-II lattice

helium mass is sufficiently near lithium that NDCX-II voltages only need retiming

case shown assumes ideal beam with parameters set using zero-D code

Sodium would require considerable modification of NDCX-II

sodium has 3.3 times the mass of lithium

- zero-D code scaling requires higher initial energy (430 kV)
- initial charge is halved and beam length is reduced by the mass ratio
- early ASP runs still require additional tilt cells for initial and final compression

Take-aways

US researchers are completing NDCX-II, a small, medium-energy induction accelerator

- use legacy induction modules from decommissioned electron machine ATA
- initial layout is expected to produce a space-charge-dominated beam of 1.2-MeV Li⁺
- "Lego-block" design allows lattice to be easily reconfigured

energy can be increased to 9 MeV with available induction modules

- adding spare ATA cells offers a cost-effective pathway to higher energies
- increased fluence and reduced duration would make NDCX-II a better HEDP testbed
- no changes are needed to existing NDCX-II front end

current can be reduced to extend source lifetime

- lithium sources require high temperatures (1250-1275°C) for full current
- source lifetime is expected to be 40 hours at that temperature
- reducing current during alignment and turning extends lifetime

using other ion species can allow Bragg-peak deposition at higher energies

- heavier ions require higher-energy source or more upstream acceleration
- usable scenarios still must be worked out

NDCX-II will have a large operating range

What is ASP-zero?

ASP-zero calculates a "0-D" approximation to NDCX-II acceleration schedules

essentially a Python spreadsheet developed in 2011 by Alex Friedman

- tracks positions and energies of head and tail particles
- estimates effects of space charge from a constant-radius "g-factor" model
- main loop has just 14 lines of code

Details of the model

beam head and tail kinetic energy is driven by two effects

- applied voltages cause energy jumps in the gaps, treated here as instantaneous head and tail gap voltages are taken from the NDCX-II reference design pulse durations are adjusted as needed to accommodate faster or slower beams the user may scale voltages in the compression section, as needed
- between gaps, space charge field accelerate head and decelerate tail "g-factor" model is used, assuming a parabolic density profile the space charge force is adjusted by an ad-hoc multiplier α to match ASP

equations

$$\lambda(z) = \lambda_m \left[1 - \left(\frac{2z}{L} \right)^2 \right]$$

$$\frac{q_{\text{tot}}}{2} = \int_0^{L/2} \lambda(z) dz = \frac{\lambda_m L}{3}$$

$$\lambda_m = \frac{3}{2} \frac{q_{\text{tot}}}{L}$$

 $\frac{d\lambda}{dz}(L/2) = -6\frac{q_{\text{tot}}}{L^2}$

$$g_0 = 1/2 + 2\log(r_{\text{pipe}}/r_{\text{beam}})$$

$$F(L/2) = -\alpha \frac{q_{\text{ion}}}{(4\pi\epsilon_0)} g_0 \frac{d\lambda}{dz} = \alpha \frac{q_{\text{ion}}}{(4\pi\epsilon_0)} g_0 6 \frac{q_{\text{tot}}}{L^2}$$

Consistency checks

transportable line charge

- assume matched Brillouin flow
- choose a maximum solenoid field B_{max} = 2.75 T
- verify that the calculated line charge is less than $\lambda_{\max} = \frac{\pi \epsilon_0 q_{\mathrm{ion}}}{2} \frac{(r_{\mathrm{beam}} B_{\max})^2}{m_{\mathrm{ion}}}$

induction-cell volt-seconds

- ATA cells have demonstrated a 70 ns FWHM at 250 kV
- verify that the calculated waveform require less than 250 x 60 kV-ns = 0.015 V-s

ASP-zero has been tested with four ion species

minimal alteration was made in NDCX-II baseline configuration

- physical layout of cells was unchanged
- initial energy was increased with mass to maintain the same initial velocity
- initial beam length decreased with mass to compensate for reduced fractional tilt

Acceleration schedules for four species are qualitatively similar

pulses are first compressed to stagnation, then allowed to expand

- final tilt voltages increase with ion mass to maintain similar velocity tilt at exit
- all cases stay within available volt-seconds limit
- Na⁺ and K⁺ exceed maximum transportable charge and may need stronger solenoids

Limitations of the model

ASP-zero provides a useful starting point for studying alternative NDCX-II species but

ASP runs made with ASP-zero parameters show insufficient compression

- parabolic model underestimates effects of space charge
- ASP designs waveforms more conservatively, reducing tilt added per cel
- adding more cells and drift space can lead to credible designs

more design effort is needed to find optimum design points for Na⁺ and K⁺ ions